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LEITER TO THE EDITOR 

End-to-end distance of linear polymers in two dimensions: a 
reassessment 

D C Rapaport 
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 17 December 1984 

Abstract. Recent exact enumeration studies of the two-dimensional self-avoiding walk have 
produced evidence in support of non-analytic scaling corrections. Newly extended series 
for the triangular and square lattices (to N = 19 and 25 respectively) are examined in the 
light of recent Monte Carlo results suggesting the absence of corrections of this type. Using 
a modified approach to series analysis, it is concluded that the end-to-end distance can 
best be understood in terms of analytic corrections alone; in view of the lack of theoretical 
support there is little reason to introduce additional kinds of correction in attempting to 
explain the data. 

In a recent letter (Rapaport 1985a) we described the results of a Monte Carlo (MC) 

study of the self-avoiding walk (SAW) on the triangular and square lattices. In addition 
to providing improved estimates for the dominant asymptotic behaviour of the mean- 
square end-to-end distance, R L ,  whose N dependence is given by R L  - AN2” ( N  is 
the number of steps), the results also suggested that the leading-order correction was 
of the form N2“-” with A = 1, rather than A = ;  as had been reported previously on 
the basis of series analysis (Djordjevic er a1 1983, Privman 1984). 

In this letter we describe the results obtained by analysing newly extended series 
for both the triangular (TRI) and square ( S Q )  lattices; the analysis involves the use of 
the dominant asymptotic behaviour as predicted by MC, augmented by correction terms 
that are ‘analytic’ in nature (i.e., A = 1,2, . . .). We show that the quality of the fit of 
the asymptotic expression thus constructed to the exact series data leaves little doubt 
that, if evidence of correction terms other than of the type included here is to be 
obtained, it will have to originate from a source other than series analysis. A correspond- 
ing absence of non-analytic corrections in the case of the two-dimensional SAW 

generating function (i.e., the number of walks) was discussed by Guttmann (1984). 
The situation in three dimensions is also very similar (Rapaport 1985b). 

The art and science of numerically extracting the asymptotic behaviour of a function 
from the early terms of its Taylor expansion has had a comparatively long and fruitful 
history (Gaunt and Guttmann 1974), and to it are due many of the results that paved 
the way to the modern theory of critical phenomena (Domb and Green 1972). There 
is almost certainly a limit, however, to the amount of information that can be gleaned 
from a series of limited length which, after all, gives only a restricted view of the 
singularities lying at and beyond the circle of convergence. This is particularly true 
in view of the highly subjective nature of series analysis; while the various kinds of 
extrapolation techniques provide sets of numerical estimates for some quantity (e.g., 
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a critical exponent), they are limited in regard to the certainty with which they are 
able to state that the values are converging to a particular limit, or whether one set of 
extrapolants is converging faster than another. The three-dimensional SAW provides 
a good example of this problem (Rapaport 1985b). 

Numerical estimation of the exponent v for walks on the TRI lattice of lengths u p  
to 14 (Martin and Watts 1971) and 16 (Grassberger 1982) led to values 0.744 and 0.746 
respectively. With the appearance of a plausible, but non-rigorous, theoretical argument 
in support of v = (Nienhuis 1982), a result difficult to exclude from existing numerical 
work despite the accuracy claimed, interest turned to the analysis of higher-order 
corrections to scaling. The fact that a renormalisation-group (RG)  treatment (Le Guillou 
and Zinn-Justin 1980) had produced a non-analytic correction exponent led to a 
relaxation of the constraint to analytic corrections only, and a recent analysis of the 
series, by then extended to 18 terms (Djordjevic et a1 1983), yielded a correction 
exponent A = 3. This value is close to half that predicted by RG namely 1.2, although 
the latter is of questionable accuracy (Djordjevic et a1 1983). At the same time, an 
independent analysis (Privman 1984) using a different approach (see below, however) 
based on just 16 terms reached essentially the same conclusion. 

Though the two calculations are ostensibly dissimilar they are in fact based on a 
common assumption, and it is this which is responsible for the near identity of their 
conclusions. Both assume that it suffices to consider the leading-order correction term 
only and ignore the rest, even though higher-order terms are likely to be significant; 
the exact R’, are then used to determine the unknowns in the functional form 
A N 2 ” (  1 + b / N A ) ,  either by looking for that value of A for which various ratio plots 
appear most linear on a log-log scale (Djordjevic et a1 1983), or by requiring that a 
certain function of the R’, show the least N-dependence (Privman 1984). Both obtain 
estimates of A less than unity, but neither attempts to explore the effect of including 
the leading-order analytic correction ( N 2 ” - ’ ) .  In view of the limited length of the 
series and  the extreme unlikelihood of other correction terms not contributing sig- 
nificantly, one is forced to conclude that both calculations are merely searches for that 
single correction term N-” which best mimics an  unknown function of N for N small 
(the simplest such function is of course a n  asymptotic expansion in integer powers of 
IF’), with no assurance that the correct limiting behaviour has been captured. 

The new terms that have been added to the series are listed in table 1. The N = 19 
values for the TRI lattice are one beyond those given by Djordjevic et a1 (1983); the 
N = 23-25 terms for the SQ lattice are an extension of the series most recently extended 
by Grassberger (1982). Calculation of the final terms for the two lattices required 216 
and 29 hours respectively on the IBM 3081 computer: it appears likely that the limits 

Table 1. Extended exact enumeration data for self-avoiding walks on triangular and square 
lattices ( c v  denotes the walk counts). 

T R I  

19 1851231376374 113279031 925422 

23 17266613812 1526445330900 
24 46 146397316 4347038392480 
25 123481 354908 12341626847324 

SQ 
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of the majority of present day computers are about to be reached (especially for the 
TRI lattice), although the development of a special-purpose processor may merit 
consideration given the simplicity of the underlying calculations. 

The R’, series were subjected to standard extrapolation tests along the lines of the 
analysis carried out for the three-dimensional problem (Rapaport 1985b) and a similar 
conclusion reached, namely that merely on the basis of this kind of numerical analysis 
it is impossible to establish whether or not non-analytic corrections are present. In 
the case of the SQ lattice there is the additional complication of odd-even oscillations 
(Watts 1974). These results will not be described here in further detail; suffice it to 
state that the v estimates obtained (assuming analytic corrections) were 0.748 (TRI)  

and 0.749 CSQ),  values entirely consistent with the exact v = i, and in disagreement with 
Grassberger (1982) who excludes this value for both lattices. 

The alternative approach to analysing these particular series takes as its starting 
point the dominant asymptotic behaviour deduced from MC simulations of very long 
SAWS (Rapaport 1985a). The walks generated ranged in length up to 2400 steps; a 
simple least-squares fit to the data yielded v = 0.7488 (TRI) and 0.7479 (sQ), while a 
biased fit assuming v = i results in amplitude estimates A = 0.7 145 * 0.0036 (TRI)  and 
0.7739 * 0.0048 (sQ). These amplitudes are used as inputs to the present series analysis 
to allow attention to focus on the correction terms. 

The form of the correction is restricted to a second-degree polynomial in 1/ N, so 
that the full asymptotic expression is 

(1) 

This form ( A  and v are assumed known) can be fitted to any set of R L  values by 
means of standard least-squares methods. Given the total absence of any a priori 
knowledge concerning the form of the correction terms, it is the quality of the fit which 
must establish whether (1 )  is justified. If, as will turn out to be the case, a close fit is 
obtained, then there is little reason to accept an alternative expression that is capable 
only of a lower quality fit, unless it is accompanied by convincing theoretical support. 
Note that ( 1 )  applies to the TRI lattice; the oscillatory component of R’, for the SQ 

lattice requires that odd and even terms be fitted separately. 
The fits were carried out for sequences of K values of R L ,  consecutive for the T R I  

lattice and alternate for the SQ, with K 3 3  (the actual quantity involved in the fit is 
N 2 (  R’, /ARzu - 1 ) ) .  The fit quality is based on the relative deviation of (1 )  from the 
known R’,, including smaller N values not used for the fit. Typical results appear in 
tables 2 and 3 from which it is clear that the deviations can be made extremely small. 
By way of contrast the corresponding deviations of Djordjevic et a1 (1983), in which 
the amplitude A is also an adjustable parameter, are some three orders of magnitude 
greater. 

Figure 1 shows the variation of the fitted correction amplitudes, a ,  and a,, for the 
T R I  lattice (the SQ is similar). Each curve corresponds to a different maximum N, the 
individual points to different numbers of data values ( K )  involved in the fit. The 
estimates of a,  and a2, the latter in particular, have yet to settle down, although a hint 
of imminent convergence is contained in the fact that the spacing of successive points 
drops as N increases or K decreases. The comparatively slow convergence also reflects 
a danger inherent in any biased analysis, namely that an error in the assumed A must 
be compensated for by the correction terms; in view of the fact that a ,  and a, are 
weighted by factors of N-’ and K2,  a given relative error in A (the MC value is close 
to 0.5’10 1 will produce errors in the correction amplitudes that are typically amplified 

R’, - A N 2 ” [  1 + u , / N +  a 2 / N 2 + 0 (  N-3)] .  
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Tnble2. Relative differences between the exact TRI lattice R’, and the asymptotic form 
( I ) ,  where a ,  and a z  are derived from a fit to the final K values. (Some of the deviations 
are so small that additional significant digits beyond those given for a ,  and a 2  are required 
to reproduce the results.) 

\ 

13 3.2 x  IO-^ 
14 I . ~ X I O - ~  
15 7.0 x 10-5 
16 2.3 x IO-’ 
17 1.7 x 

19 1 . 4 ~ 1 0 - ~  
18 -3.1 X 

5 7 

2.1 x  IO-^ 7.6 x  IO-^ 
8.1 x -5.3 x  IO-^ 

-1.3 x -2.1 x  IO-^ 

I.OX  IO-^ 3.0 x 10-5 

1 2  x IO-’ -3.6 x 
-8.8 X -3.7 X IO-’ 

-4.9 x 2.8 x 

“ I  0.761 34 0.757 62 0.752 76 
a2 -2. I613 -2.0937 -2.0089 

Table 3. Relative differences (as in table 2) for SQ lattice. The odd and even terms of the 
series are fitted separately. 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

3 4 5 

1.1 x 
7.4 x 10-5 
2.7 x 1 0 - ~  
I .7 x 
I .2 x 
5.5 x 

-1.9 X 

-9.2 x 
8.1 x 
3.9 x IO-’ 

7.8 x 10-5 
5.3 x 
8.1 x 
5.0 x 1 0-6 

-7.6 X 

-4.9 x 
-3.7 x 
-2.1 x 

3.8 x 
2.3 x 

3.1 x 10-5 
2.1 x 

- 1 . 2 ~ 1 0 - ~  
-1.8 x 
- 1.2 x 1 0 ~  
-3.7 x 
-2.1 x 

1.1 x 
7.3 x 

-1.7 x IO-’ 

a,(even) 0.951 81 0.950 50 0.948 50 
a , (odd)  0.948 89 0.947 98 0.946 43 
a2(even) -2.5279 -2.4982 -2.4541 
a,(odd) -2.9846 -2.9631 -2.9276 

by the inverses of these factors. There is indeed no way that the correction terms can 
converge properly if A is incorrect. It should also be remembered that ( 1 )  is a truncated 
asymptotic expansion and there is therefore a lower limit to N for which it produces 
results of a specified accuracy; for this reason too the values of a ,  and a, might be 
expected to change as additional terms are added to the series. 

In view of these considerations, the best correction amplitude estimates are those 
that are based on the final few series terms. For the TRI lattice a ,  = 0.761, a, = -2.16. 
In the case of the SQ lattice the odd/even series terms yield a ,  = 0.949/0.952 and 
a, = -2.98/-2.53; the two a ,  values are very close, while the a2 estimates can be 
combined to give -2.76+(-1)N 0.23 (the fit using the combined correction term is, 
not surprisingly, of lower quality than the separate oddleven fits). 
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Fit t o  series I TRI I -~~ --- 

! ~ 2 I 

0.72 0.73 0.74 0.75 0.76 
01 

Figure 1. Correction amplitudes a ,  and a*, obtained by fitting to different sets of R L ,  for 
the TRI lattice. Each point corresponds to a distinct set of consecutive values 
R < , - K + ,  . . . R:,. The curves join points with common N ;  the rightmost point on each 
curve is for K =3,  and K increases in unit steps along the curve. :3, N =  13; E, N = 15;  
0, N = 1 7 :  A,  N=19 .  

Only the 1 / N  correction was discussed in the context of the MC study (Rapaport 
1984a) and rough estimates of the correction amplitudes were 0.6 (TRI)  and 0.8 (sQ). 

The present values of a,  are some 25% higher, but the discrepancy is more than 
adequately covered by the negative 1/ N 2  correction which leads to the correct curvature 
of the graphs of R’, against N (Rapaport 1984a, figure 1 ) ; the second-order correction 
is not readily deducible from the MC results alone. The predictions of (1 )  using the 
above values of a ,  and a,  differ from the MC measurements by less than the statistical 
uncertainty of the data. 

In recapitulation, the results confirm the statement made earlier that in view of the 
very close agreement that can be obtained on the basis of analytic corrections alone, 
there is no reason to postulate the existence of non-analytic corrections in order to 
interpret the end-to-end distance series. Only if a well founded theoretical case in 
support of alternative forms of correction terms is developed will it become necessary 
to reassess the methods and the results of the numerical analysis. 

I thank Professor C Domb for helpful comments. 
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